The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Camouflaged objects are seamlessly blended in with their surroundings, which brings a challenging detection task in computer vision. Optimizing a convolutional neural network (CNN) for camouflaged object detection (COD) tends to activate local discriminative regions while ignoring complete object extent, causing the partial activation issue which inevitably leads to missing or redundant regions of objects. In this paper, we argue that partial activation is caused by the intrinsic characteristics of CNN, where the convolution operations produce local receptive fields and experience difficulty to capture long-range feature dependency among image regions. In order to obtain feature maps that could activate full object extent, keeping the segmental results from being overwhelmed by noisy features, a novel framework termed Cross-Model Detail Querying network (DQnet) is proposed. It reasons the relations between long-range-aware representations and multi-scale local details to make the enhanced representation fully highlight the object regions and eliminate noise on non-object regions. Specifically, a vanilla ViT pretrained with self-supervised learning (SSL) is employed to model long-range dependencies among image regions. A ResNet is employed to enable learning fine-grained spatial local details in multiple scales. Then, to effectively retrieve object-related details, a Relation-Based Querying (RBQ) module is proposed to explore window-based interactions between the global representations and the multi-scale local details. Extensive experiments are conducted on the widely used COD datasets and show that our DQnet outperforms the current state-of-the-arts.
translated by 谷歌翻译
We introduce a lightweight network to improve descriptors of keypoints within the same image. The network takes the original descriptors and the geometric properties of keypoints as the input, and uses an MLP-based self-boosting stage and a Transformer-based cross-boosting stage to enhance the descriptors. The enhanced descriptors can be either real-valued or binary ones. We use the proposed network to boost both hand-crafted (ORB, SIFT) and the state-of-the-art learning-based descriptors (SuperPoint, ALIKE) and evaluate them on image matching, visual localization, and structure-from-motion tasks. The results show that our method significantly improves the performance of each task, particularly in challenging cases such as large illumination changes or repetitive patterns. Our method requires only 3.2ms on desktop GPU and 27ms on embedded GPU to process 2000 features, which is fast enough to be applied to a practical system.
translated by 谷歌翻译
激光镜头和相机是两个用于自动驾驶中3D感知的互补传感器。激光点云具有准确的空间和几何信息,而RGB图像为上下文推理提供了纹理和颜色数据。为了共同利用激光雷达和相机,现有的融合方法倾向于基于校准,即一对一的映射,将每个3D点与一个投影图像像素对齐。但是,这些方法的性能高度依赖于校准质量,这对传感器的时间和空间同步敏感。因此,我们提出了一个动态的交叉注意(DCA)模块,具有新型的一对一的交叉模式映射,该模块从初始投影对邻域的最初投影中学习了多个偏移,从而发展了对校准误差的耐受性。此外,提出了A \ textIt {动态查询增强}来感知与模型无关的校准,从而进一步增强了DCA对初始未对准的耐受性。名为“动态跨注意网络”(DCAN)的整个融合体系结构利用了多级图像特征,并适应了点云的多个表示,这使DCA可以用作插件融合模块。对Nuscenes和Kitti的广泛实验证明了DCA的有效性。拟议的DCAN在Nuscenes检测挑战上优于最先进的方法。
translated by 谷歌翻译
我们研究了预训练的神经模型的鲁棒性特性,以自动语音识别。机器学习中的现实生活数据通常非常嘈杂,几乎永远不会干净,这可以归因于各种因素,具体取决于域,例如异常值,随机噪声和对抗性噪声。因此,我们为各种任务开发的模型应该对这种嘈杂的数据具有强大的稳健性,这导致了强大的机器学习的蓬勃发展。我们认为在自动语音识别的情况下考虑了这个重要问题。随着预训练模型的日益普及,分析和理解此类模型对噪声的鲁棒性是一个重要问题。在这项工作中,我们对LibrisPeech和Timit数据集进行了预训练的神经模型Wav2Vec2,Hubert和Distilhubert的鲁棒性分析。我们使用不同种类的尖锐机制,并测量由推理时间和标准单词错误率指标量化的模型性能。当在层之间注入噪声时,我们还对WAV2VEC2模型进行了深入的层分析,从而使我们能够在高级别上预测每个层学习的内容。最后,对于此模型,我们可视化整个层中错误的传播,并比较它在清洁数据与嘈杂数据上的行为。我们的实验构成了Pasad等人的预测。 [2021],还为未来的工作提出了有趣的方向。
translated by 谷歌翻译
无锚的检测器基本上将对象检测作为密集的分类和回归。对于流行的无锚检测器,通常是引入单个预测分支来估计本地化的质量。当我们深入研究分类和质量估计的实践时,会观察到以下不一致之处。首先,对于某些分配了完全不同标签的相邻样品,训练有素的模型将产生相似的分类分数。这违反了训练目标并导致绩效退化。其次,发现检测到具有较高信心的边界框与相应的地面真相具有较小的重叠。准确的局部边界框将被非最大抑制(NMS)过程中的精确量抑制。为了解决不一致问题,提出了动态平滑标签分配(DSLA)方法。基于最初在FCO中开发的中心概念,提出了平稳的分配策略。在[0,1]中将标签平滑至连续值,以在正样品和负样品之间稳定过渡。联合(IOU)在训练过程中会动态预测,并与平滑标签结合。分配动态平滑标签以监督分类分支。在这样的监督下,质量估计分支自然合并为分类分支,这简化了无锚探测器的体系结构。全面的实验是在MS Coco基准上进行的。已经证明,DSLA可以通过减轻上述无锚固探测器的不一致来显着提高检测准确性。我们的代码在https://github.com/yonghaohe/dsla上发布。
translated by 谷歌翻译
神经体系结构搜索方法寻求具有有效的体重共享超级网训练的最佳候选者。但是,最近的研究表明,关于独立架构和共享重量网络之间的性能的排名一致性差。在本文中,我们提出了提前引导的一声NAS(PGONA),以加强超级网的排名相关性。具体而言,我们首先探讨激活功能的效果,并提出基于三明治规则的平衡采样策略,以减轻超级网中的重量耦合。然后,采用了拖鞋和禅宗得分来指导超级网的训练,并具有排名相关性损失。我们的PGONA在CVPR2022第二轻型NAS挑战赛的SuperNet轨道中排名第三。代码可在https://github.com/pprp/cvpr2022-nas?competition-track1-3th-solution中找到。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
Bundle建议旨在向用户推荐整个项目。然而,他们通常忽略了用户对采用项目的意图的多样性,并且无法解散用户在表示中的意图。在捆绑建议的实际情况下,用户的意图可以自然分布在该用户的不同捆绑中(全局视图),而捆绑包可能包含用户的多个意图(本地视图)。每个视图都有其意图解开的优势:1)从全球视图中,涉及更多项目来呈现每个意图,这可以更清楚地证明用户在每个意图下的喜好。 2)从本地视图中,它可以揭示每个意图下的项目之间的关联,因为同一捆绑包中的项目彼此高度相关。为此,我们提出了一个名为Multi-View Intentangle图形网络(MIDGN)的新型模型,该模型能够精确,全面地捕获用户意图的多样性和项目的关联,并在更精细的粒度上。具体而言,MIDGN分别从两个不同的角度解开了用户的意图:1)在全球级别,中型中MIDGN将用户的意图与捆绑关系相结合; 2)在本地级别,MIDGN将用户的意图与每个捆绑包中的项目结合在一起。同时,我们比较用户的意图在对比度学习框架下从不同观点中解散,以提高学习意图。在两个基准数据集上进行的广泛实验表明,中期的表现分别超过10.7%和26.8%。
translated by 谷歌翻译
我们介绍了三级管道:调整多样化输入(RDIM),多样性集合(DEM)和区域配件,共同产生可转移的对抗性示例。我们首先探讨现有攻击之间的内部关系,并提出能够利用这种关系的RDIM。然后我们提出DEM,多尺度版本的RDIM,生成多尺度梯度。在前两个步骤之后,我们将价值转换为迭代拟合的区域。 RDIM和区域拟合不需要额外的运行时间,这三个步骤可以充分集成到其他攻击中。我们最好的攻击愚弄了六个黑匣子防御,平均成功率为93%,这均高于最先进的基于梯度的攻击。此外,我们重新思考现有的攻击,而不是简单地堆叠在旧的旧方法上以获得更好的性能。预计我们的调查结果将成为探索攻击方法之间内部关系的开始。代码在https://github.com/278287847/DEM中获得。
translated by 谷歌翻译